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Abstract Vorticity formulations for the incompressible Navier-Stokes equations have certain
advantages over primitive-variable formulations including the fact that the number of equations to
be solved is reduced through the elimination of the pressure variable, identical satisfaction of the
incompressibility constraint and the continuity equation, and an implicitly higher-order
approximation of the velocity components. For the most part, vorticity methods have been used
to solve exterior isothermal problems. In this research, a vorticity formulation is used to study the
natural convection flows in differentially-heated enclosures. The numerical algorithm is divided
into three steps: two kinematic steps and one kinetic step. The kinematics are governed by the
generalized Helmholtz decomposition (GHD) which is solved using a boundary element method
(BEM) whereas the kinetics are governed by the vorticity equation which is solved using a finite
element method (FEM). In the first kinematic step, vortex sheet strengths are determined from a
novel Galerkin implementation of the GHD. These vortex sheet strengths are used to determine
Neumann boundary conditions for the vorticity equation. (The thermal boundary conditions are
already known.) In the second kinematic step, the interior velocity field is determined using the
regular (non-Galerkin) form of the GHD. This step, in a sense, linearizes the convective
acceleration terms in both the vorticity and energy equations. In the third kinetic step, the coupled
vorticity and energy equations are solved using a Galerkin FEM to determine the updated values of
the vorticity and thermal fields. Two benchmark problems are considered to show the robustness
and versatility of this formulation including natural convection in an 8 £ 1 differentially-heated
enclosure at a near critical Rayleigh number.

1. Introduction
Vorticity formulations have been used to analyze a variety of isothermal,
incompressible viscous flow problems including interior flows in driven cavities
(Ingber and Kempka, 2001; Ramšak and Škerget, 1999; Young et al., 2000) and
Couette devices (Machane et al., 2000) and exterior flows over cylinders
(El-Refaee, 1994; Koumoutsakos and Leonard, 1995) and airfoils (Tuncer et al.,
1990; Wang and Wu, 1990). Far fewer applications of vorticity formulations have
appeared in the literature for non-isothermal flows. Škerget and coworkers have
used vorticity formulations to study both natural convection in porous media
( Jeel et al., 1999) and differentially-heated enclosures (Ramšak and
Škerget, 1999).

Vorticity formulations for the incompressible Navier-Stokes equations have
distinct advantages over velocity-pressure formulations. These advantages
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remain largely untapped; however, since questions concerning how to
determine accurate boundary conditions for vorticity formulations have posed
difficult problems (Ostrikov and Zhmulin, 1994). Boundary conditions are
typically given in terms of prescribed velocities, but boundary conditions in
terms of vorticity are required for vorticity formulations. Thus, it is necessary
to deduce vorticity boundary conditions from not only the velocity boundary
conditions, but also from the vorticity field in the domain.

In a recent paper, Ingber and Kempka (2001) discussed a Galerkin
implementation of the generalized Helmholtz decomposition (GHD) to
determine accurate boundary conditions for either the boundary vorticity
(yielding a Dirchlet problem) or the vorticity flux (yielding a Neumann
problem). They showed that the Galerkin implementation of the GHD yielded
vorticity boundary conditions that resulted in the velocity boundary conditions
being satisfied in orders of magnitude better than by using the more traditional
point-collocation implementation of the GHD.

The ultimate purpose of resolving the issues of accurate specification of the
vorticity boundary conditions is to implement a method for determining these
boundary conditions into a numerical algorithm based on the vorticity form of
the Navier-Stokes equations. Ingber and Kempka (2001) coupled a Galerkin
finite element method (FEM) for solving the vorticity equation with the
Galerkin GHD to determine appropriate boundary conditions to solve a variety
of internal and external isothermal viscous fluid flow problems. In the current
research, this vorticity approach is extended to two-dimensional (2D) flows of
Boussinesque fluids. The accuracy of the formulation is demonstrated by
considering the natural convection flows in differentially-heated enclosures.

2. Numerical formulation
The 2D non-dimensional governing equations for the time-dependent thermal
convection problem are the incompressible Navier-Stokes equations,
conservation of mass, and the energy equation written in terms of temperature:

›~u

›t
þ ~u ·7~u ¼ 27P þ

ffiffiffiffiffiffi
Pr

Ra

r
72~u þ~ju; ð1Þ

7 · ~u ¼ 0; ð2Þ

and

›u

›t
þ ~u ·7u ¼

1ffiffiffiffiffiffiffiffiffiffi
RaPr

p 72u; ð3Þ

where ~u, P, and u are the non-dimensional velocity, pressure, and temperature
fields, respectively, Ra is the Rayleigh number, Pr is the Prandtl number, and ~j
is the unit vector in the y-direction. The non-dimensional equations are
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obtained using a characteristic width, W, of the enclosure, velocity
U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbWDT

p
, time scale t ¼ W=U , and pressure �P ¼ rU 2. Here, DT ¼

Th 2 Tc is the difference between the temperature of the hot wall, Th, and the
cold wall, Tc, r is the mass density, g is the gravitational acceleration, and b is
the coefficient of thermal expansion. The non-dimensional temperature u is
defined by

u ¼
T 2 Tr

DT
; ð4Þ

where the reference temperature is given by

Tr ¼
Th þ Tc

2
: ð5Þ

The Rayleigh number, Ra, and Prandtl number, Pr, are given by

Ra ¼
gbDTW 3

na
; Pr ¼

n

a
;

where a is the thermal diffusivity.
To express the momentum equation in terms of the vorticity, v ¼ 7 £ ~u, the

curl of equation (1) is taken to yield

› ~v

›t
þ ð~u ·7Þ ~v ¼ n72 ~vþ

›u

›x
: ð6Þ

Hence, the governing equations in terms of vorticity consists of equations (3)
and (6) only since the continuity equation (equation (2)) is identically satisfied
by the vorticity formulation.

In the course of solving the governing system of equations, the velocity field,
~u, must be determined from the vorticity field, ~v, and the creation of vorticity
on the boundary must be determined from the velocity boundary conditions. In
the present formulation, determining both the interior velocity field and the
creation of vorticity on the boundary are accomplished in an unified manner
using the GHD.

The GHD is a classical kinematical statement decomposing the vorticity
field into a solenoidal and rotational part (Morino, 1986). Derivations and
discussions of the GHD can be found in Hribersek and Skerget, 1996; Kempka
et al., 1996; Meir and Schmidt, 1996; Morino, 1986; Wu and Thompson, 1973).
For an incompressible fluid in 2D, the GHD is given by
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hð~xÞ½~uð~xÞ2 ~gð~xÞ £ ~nð~xÞ� ¼

Z
V

~vð ~yÞ £ ~rð~x; ~yÞ

r 2ð~x; ~yÞ
dVð ~yÞ

þ

Z
G

½ð~uð ~yÞ2 ~gð ~yÞ £ ~nð ~yÞÞ £ ~nð ~yÞ� £ ~rð~x; ~yÞ

r 2ð~x; ~yÞ
dGð ~yÞ

2

Z
G

½~uð ~yÞ · ~nð ~yÞ�~rð~x; ~yÞ

r 2ð~x; ~yÞ
dGð ~yÞ;

ð7Þ

where ~n is the unit normal vector on the boundary (pointing away from the
fluid), ~r ¼ ~x 2 ~y, r ¼j~rj, V represents the 2D domain, G is the boundary of V,
and ~g represents the vortex sheet strengths along the boundary. The coefficient
h is a function of the location of the field point ~x. In particular, for field points
on smooth portions of the boundary, h ¼ p=2.

The GHD is valid only for certain kinematically admissible interior vorticity
fields, ~v, and velocity boundary conditions. For example, assume that equation
(7) is satisfied at a given time, t, and consider an explicit time integration of the
vorticity and energy equations. After the vorticity field has been transported,
but without properly considering the production and transport of vorticity
at the boundary, equation (7) is no longer generally satisfied. Kinematic
compatibility is re-established by solving equation (7) for the unknown vortex
sheet strengths which represents the vorticity creation during a given time step
(Ingber and Kempka, 2001; Lighthill, 1963).

3. Numerical implementation
A Galerkin implementation of the GHD for determining the vortex sheet
strengths using a traditional boundary element discretization is presented
first. Next, a Galerkin FEM is presented for solving the vorticity form of
the governing kinetic equations (equations (6) and (3)). Finally, an outline of
the numerical algorithm for analyzing the natural convection flows in
enclosures is presented.

3.1 Galerkin approximation of the GHD
The domain V is discretized into interior integration cells and the boundary of
the domain G is discretized into boundary elements. The interior integration
cells are identical to the finite elements used for the solution of the vorticity and
energy equations. Furthermore, as discussed later, the approximation of the
vorticity v used to evalaute the domain integral in the GHD is based on the
standard finite element nodal basis functions. Hence, the interior integration
cells will be refered to in this section as finite elements. For simplicity, let ~t
represent ~u 2 ~g £ ~n. Within the eth finite element Ve, the jth component of ~v is
approximated as
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ve
j ð ~yÞ ¼

X4

l¼1

ve
ljSlð ~yÞ; ð8Þ

where ve
lj represents the value of the jth component of ~v at the lth node within

the eth finite element and Sl represents the bilinear Lagrangian shape function
associated with the finite element. Similarly, within the eth boundary element,
Ge, the jth component of ~t is approximated as

t e
j ð ~yÞ ¼

X2

l¼1

t e
ljN lð ~yÞ ð9Þ

where, in this case, t e
lj represents the value of the jth component of ~t at the lth

node within the eth boundary element and Nl represents the linear Lagrangian
shape function associated with the boundary element.

Substituting equations (8) and (9) into equation (7), the discretized form of
the GHD can be written using indicial notation as

hð~xÞtið~xÞ ¼
XNFE

e¼1

Z
Ve

eijkvljSlð ~yÞdk

drdr
dVþ

XNBE

e¼1

Z
Ge

eimpemjkt
e
ljN lð ~yÞnkdp

drdr
dG

2
XNBE

e¼1

Z
Ge

t e
lj N lð ~yÞnjdi

drdr
dG; ð10Þ

where eijk is the unit alternating tensor, NFE represents the number of finite
elements, NBE represents the number of boundary elements, and di ¼ xi 2 yi

where ~x ¼ ðx1; x2Þ and ~y ¼ ð y1; y2Þ.
Using the properties of the unit alternating tensor, this equation can be

rewritten as

hð~xÞtið~xÞ ¼
XNFE

g¼1

Z
Vg

eijkv
g
lj Sldk

drdr
dV

þ
XNBE

e¼1

Z
Ge

t e
lkN ldkni 2 t e

li N ldknk 2 t e
lkN ldink

drdr
dG: ð11Þ

The term h(~x)ti(~x) can be incorporated directly into the boundary integral by
considering rigid body arguments (Brebbia and Dominguez, 1989; Ingber and
Kempka, 2001). That is, by considering ti to be a constant, it can be shown that
(Ingber and Kempka, 2001)
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Z
G

d2n1 2 d1n2

drdr
dG ¼ 0; ð12Þ

and

hð~xÞ ¼ 2

Z
G

dknk

drdr
dG: ð13Þ

Using equations (12) and (13), the left hand side of equation (11) can be
incorporated into the right hand side. The resulting integral equation is given
by

0 ¼
XNFE

g¼1

Z
Vg

eijkv
g
lj Slð ~yÞdk

drdr
dV

þ
XNBE

e¼1

Z
Ge

½te
lkN lð ~yÞ2 tið~xÞ�ðdkni 2 dinkÞ2 ½te

liN lð ~yÞ2 tið~xÞ�dknk

drdr
dG:

ð14Þ

This formulation not only has the advantage of not having to evaluate h(~x)
explicitly, but also regularizes the Cauchy Principal Value integral on the right
hand side of equation (11).

To obtain a Galerkin approximation, equation (14) is multiplied by the shape
functions, Nm(~x) and integrated over the boundary G. Assuming that Nm(~x) has
support within the fth boundary element and, within that element

tkð~xÞ jGf
¼ tf

lkN lð~xÞ;

the discretized Galerkin approximation for the GHD is given by

0 ¼
XNFE

g¼1

Z
Gf

Nmð~xÞ

Z
Vg

eijkv
g
lj Slð ~yÞdk

drdr
dV

þ
XNBE

e¼1

Z
Gf

Nmð~xÞ

Z
Ge

�
t e
lkN lð ~yÞ2 t f

li N lð~xÞ
�
ðdkni 2 dinkÞ

drdr
dG

2
XNBE

e¼1

Z
Gf

Nmð~xÞ

Z
Ge

�
t e
li N lð ~yÞ2 t f

li N lð~xÞ
�
dknk

drdr
dG:

ð15Þ
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3.2 Galerkin FEM solution of the governing equations
The Galerkin FEM used to solve the governing equations for natural
convection flows is outlined in this subsection. Multiplying the 2D vorticity
equation (equation (6)) and the energy equation (equation (3)) by a weighting
function, w, and integrating over the domain yieldsZ

V

w
›v

›t
dVþ

Z
V

uxw
›v

›x
þ uyw

›v

›y

� 	
dV

2

Z
V

ffiffiffiffiffiffi
Pr

Ra

r
w
›2v

›x2
þ w

›2v

›y2

� 	
dV2

Z
V

w
›u

›x
dV ¼ 0;

ð16Þ

and Z
V

w
›u

›t
dVþ

Z
V

uxw
›u

›x
þ uyw

›u

›y

� 	
dV

2

Z
V

ffiffiffiffiffiffiffiffiffiffi
1

PrRa

r
w
›2u

›x2
þ w

›2v

›y2

� 	
dV ¼ 0;

ð17Þ

where ux and uy are the components of the velocity vector ~u. Integrating the
second-order terms by parts (applying Green’s theorem), the weak forms of the
above equations are written asZ

V

w
›v

›t
dVþ

Z
V

uxw
›v

›x
þ uyw

›v

›y

� 	
dV

þ

Z
V

ffiffiffiffiffiffi
Pr

Ra

r
›v

›x

›w

›x
þ

›v

›y

›w

›y

� 	
dVþ

Z
V

w
›u

›x
dV ¼

Z
G

wqn dG;

ð18Þ

and Z
V

w
›u

›t
dVþ

Z
V

uxw
›u

›x
þ uyw

›u

›y

� 	
dV

þ

Z
V

ffiffiffiffiffiffiffiffiffiffi
1

PrRa

r
›u

›x

›w

›x
þ

›u

›y

›w

›y

� 	
dV ¼ 0:

ð19Þ

As shown by Ingber and Kempka (2001), the normal flux of vorticity is related
to the vortex sheet strengths by

qn ¼
›v

›n
¼

g

nDt
: ð20Þ
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Further, since temperature is specified on the lateral boundary of the enclosure
and the top and bottom of the enclosure is insolated, no boundary integral
appears in equation (18).

The weak forms are discretized by subdividing the domain V into finite
elements and subdividing the boundary G into boundary elements. Again,
using isoparametric bilinear Lagrangian interpolation for the finite elements
and linear interpolation for the boundary elements, the weak forms can be
written in discrete form as

XNBE

i¼1

we
i

Z
Ge

Ne
i

Ne
k

Dt
dGg e

k ¼
XNFE

e¼1

we
i

Z
Ve

SiSj dV
dve

j

dt

þ
XNFE

e¼1

we
i

ffiffiffiffiffiffi
Pr

Ra

r Z
Ve

›Si

›x

›Sj

›x
þ

›Si

›y

›Sj

›y

� 	
dVve

j

þ
XNFE

e¼1

we
i

Z
Ve

Si
›Sj

›x
dVu e

j

þ
XNFE

e¼1

we
i

Z
Ve

Si

›Sj

›x
ue

xkSk þ Si

›Sj

›y
ue

ykSk

� 	
dVve

j ;

ð21Þ

and

0 ¼
XNFE

e¼1

we
i

Z
Ve

SiSj dV
du e

j

dt

þ
XNFE

e¼1

we
i

ffiffiffiffiffiffi
Pr

Ra

r Z
Ve

›Si

›x

›Sj

›x
þ

›Si

›y

›Sj

›y
dV

� 	
dVu e

j

þ
XNFE

e¼1

we
i

Z
Ve

Si
›Sj

›x
ue

xkSk þ Si
›Sj

›y
ue

ykSk

� 	
dVu e

j ; ð22Þ

where we
i , v

e
i , ue

xi, ue
yi, and u e

j represent the values of w, v, ux, uy, and u,
respectively, at the ith node within the eth finite element and g e

i represents the
value of g at the ith node within the eth boundary element. For convenience, the
element capacitance matrices, element stiffness matrices, and element load
vectors are defined by
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ðC eÞij ¼

Z
Ve

Se
i S

e
j dV; ð23Þ

ðKe
xÞij ¼

Z
Ve

›S e
i

›x

›S e
j

›x
dV; ð24Þ

ðKe
yÞij ¼

Z
Ve

›S e
i

›y

›S e
j

›y
dV; ð25Þ

ðKe
uÞij ¼

X4

k¼1

ue
xk

Z
Ve

Se
i

›Se
j

›x
Se

k dV; ð26Þ

ðKe
vÞij ¼

X4

k¼1

ue
yk

Z
Ve

Se
i

›Se
j

›y
Se

k dV; ð27Þ

ðKe
uÞij ¼

Z
Ve

Se
i

›Se
j

›x
dV; ð28Þ

ðF eÞi ¼
1

Dt
g e

k

Z
Ge

Ne
i N

e
j dG: ð29Þ

After assembly, the discretized weak forms can be written in the following
convenient form

½Kth�{u} þ Kx þ Ky þ

ffiffiffiffiffiffi
Pr

Ra

r
ðKu þ KvÞ

" #
{v} þ ½C�{ _v} ¼ {F}; ð30Þ

and

Kx þ Ky þ

ffiffiffiffiffiffiffiffiffiffi
1

PrRa

r
ðKu þ KvÞ

" #
{u} þ ½C�{ _u} ¼ 0: ð31Þ

The discretized equation set (equation (30) and equation (31) is inherently
non-linear since the matrices Ku and Kv contain the unknown velocity field
components. In the current implementation, the velocity components in those
stiffness matrices are evaluated using equation (7). Time is discretized using an
Euler explicit integrator resulting in a first-order accurate method in time.
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3.3 Outline of the numerical algorithm
The numerical algorithm for solving the equations governing natural
convection flows in enclosures is outlined. First, the vortex sheet strengths
are calculated using the tangential component of the Galerkin form of the GHD
(equation (15)). The vortex sheet strengths are then related to the normal flux of
vorticity at the boundary using equation (20). Next, the internal velocities at the
finite element interior nodes are calculated using the regular form of the GHD
(equation (7)) allowing the evaluation of the stiffness matrices ðKe

uÞij and ðKe
vÞij.

Finally, to complete the time step, the vorticity and temperature fields are
transported by solving the explicit form of the discretized finite element
equations (equation (30) and (31)). After the explicit convection of vorticity, the
flow field is again kinematically incompatible without incorporating the newly
formed vortex sheet strengths at the boundary. This kinematic incompatibility
is resolved by going back to the first step, thus initiating the next time step.

In the current implementation of the numerical algorithm, both the
discretized FEM and the GHD equations are solved by using an LU solver. The
decompositions are done outside the time loop. Further, all integrals for
evaluating the interior velocities are also performed outside the time loop.
Hence, within the time loop, the majority of calculation is matrix-vector
multiplication and back substitution.

4. Numerical results
Two benchmark problems are considered to show the capabilities of the
current vorticity formulation. The first benchmark problem is natural
convection in a differentially-heated square enclosure at Pr ¼ 0:71 and
Ra ¼ 1;000. The second benchmark problem is natural convection in an 8£ 1
differentially-heated enclosure at Pr ¼ 0:71 and Ra ¼ 3:1 £ 105. All
simulations except for the finest mesh in the second benchmark were started
from an initially quiescent state with the temperatures at the left and right
walls impulsively changed to u ¼ 0:5 and 20.5, respectively. The simulation
using the finest mesh for the second benchmark was started from interpolated
results of the medium mesh after quasi-steady state had been achieved.

4.1 Benchmark problem 1
Only the steady state results are presented for the square enclosure in the first
benchmark problem even though the simulation was run from the initial
conditions through the transient. A 31 £ 31 and 41 £ 41 uniform finite element
mesh and non-dimensional time step of 0.001 was used. Steady state was
achieved within 15 s.

Contour plots for the u-component (horizontal) of velocity, v-component
(vertical) of velocity, temperature and vorticity at steady state determined
using the 31 £ 31 finite element mesh is shown in Figure 1. De Vahl Davis and
Jones (1983) compiled numerical results from a number of invited
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computational fluid mechanicians for this problem and De Vahl Davis (1983)
ran his own benchmark solution using a forward time, center space (FTCS)
finite difference method. The current contour plots shown in Figure 1 are
qualitatively similar to De Vahl Davis’ contour plots.

In both papers De Vahl Davis (1983); by De Vahl Davis and Jones (1983), and
benchmark solutions are provided for the maximum u-component of velocity
along the vertical midplane of the enclosure, the maximum v-component of
velocity along the horizontal midplane, and the average Nusselt number along
either vertical side. The authors determined their benchmark solution by
extrapolating results from a 11 £ 11, 21 £ 21, and 41 £ 41 uniform finite
difference mesh. The authors claimed that their benchmark solutions at a
Rayleigh number of 1,000 were within 0.1 percent of the exact solution.
However, the authors did not indicate what type of error measure they used or
what type of analysis they used to arrive at their conclusion. A comparison of
the current and the benchmark results is shown in Table I. The results
generated with the vorticity method on both the 31 £ 31 and 41 £ 41 uniform
mesh are in excellent agreement with the benchmark solutions. The percent

Figure 1.
Contour plots for the

dependent variables at
steady state in the square

differentially-heated
enclosure
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difference between all three sets of results for the maximum horizontal velocity,
the maximum vertical velocity and the average Nusselt number are less than
1/2 of a percent.

4.2 Benchmark problem 2
As mentioned earlier, benchmark problem 2 considers an 8 £ 1
differentially-heated enclosure at a near critical Rayleigh number of 310,000.
This problem has been studied extensively and, in fact, was the topic of a series
of special sessions at the First MIT Conference on Computational Fluid and
Solid Mechanics (Christon et al., 2001). Stability analyses indicate that the
problem will reach a quasi-steady state, that is, the solution will oscillate about
a mean (Salinger et al., 2001). In the current results, a quasi-steady state is
achieved after approximately 350 s when running the simulation from a
quiescent state. Three separate discretizations are considered. The coarse
discretization contained a 21 £ 101 grid and used a dimensionless time step of
0.003. To resolve the boundary layers, the grid was stretched so that the finite
elements were smaller near the walls of the enclosure. The minimum spacing of
nodes in the x-direction was 0.01749 and the minimum spacing in the
y-direction was 0.02938. The medium discretization contained a 41 £ 201
stretched grid and also used a dimensionless time step of 0.003. The minimum
spacing of nodes in the x-direction was 0.01471 and the minimum spacing in
the y-direction was 0.01471. The fine discretization contained a 61 £ 301 grid
and used a dimensionless time step of 0.002. The minimum spacing in the
x-direction was 0.00591042 and the minimum spacing in the y-direction was
0.00860986. The simulation for the fine mesh was not started from a quiescent
state, but from the interpolated values of the medium mesh after quasi-steady
state was reached. Interestingly enough, quasi-steady state in this case took
approximately 180 s even though the initial conditions were fairly close to the
quasi-steady state.

Contour plots for the principal unknowns, u, v, v, and u, generated using the
medium discretization at a given instant in time are shown in Figure 2. The
thermal and velocity boundary layers can easily be seen from the contour plots.
The time histories of these unknowns at the point x ¼ 0:819, and y ¼ 0:630 are

Vorticity method
31 £ 31 mesh

Vorticity method
41 £ 41 mesh

FCTS extrapolated
results

umax 0.1373 0.1373 0.1369
z 0.813 0.813 0.813
vmax 0.1392 0.1391 0.1387
x 0.179 0.179 0.178
Nu 1.117 1.116 1.118

Table I.
A comparison between
the current vorticity and
FTCS finite difference
method results (De Vahl
Davis, 1983; De Vahl
Davis and Jones, 1983)
for benchmark
problem 1
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shown in Figure 3 again using the medium discretization. As seen in the figure,
quasi-steady state is achieved in approximately 350 s.

A quantitative comparison with benchmark data is provided in Table II. The
benchmark data are provided by Xin and Le Quéré (1991) using a
pseudo-spectral method and Johnston and Krasny (2001) using
a vorticity-streamfunction method. The benchmark solutions were, in some
sense, deemed to be the best solutions of approximately 30 contributions at the
First MIT Conference on Computational Fluid and Solid Mechanics (Christon
et al., 2001).

The average values of the dependent variables u, v, v, and u are shown in the
table for the point x ¼ 0:181, and y ¼ 7:37. The average Nusselt number, Nu, is
integrated over the left-hand-side of the enclosure, although the value over the
right-hand-side was found to be identical. The average kinetic energy and
enstrophy are defined by

ûðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2A

Z
A

~u · ~u dA

s
; v̂ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2A

Z
A

v2 dA

s
:

The results for the point data generated by the vorticity code are seen to be
approaching the benchmark results with grid refinement. The closest result is
for the temperature which is within 2 percent of the benchmark result for the

Figure 2.
Contour plots for the

dependent variables at
an instant in time

for the 8 £ 1
differentially-heated

enclosure
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Figure 3.
Time histories of the
dependent variables at
the point x ¼ 0:819, and
y ¼ 0:630

Coarse grid Medium grid Fine grid Benchmark solution

u 7.467E-2 6.448E-2 6.243E-2 5.636E-2a

Du 8.449E-2 5.623E-2 4.179E-2 5.483E-2a

v 4.834E-1 4.776E-1 4.762E-1 4.583E-1b

Dv 9.670E-2 7.282E-2 5.630E-2 7.718E-2b

v 22.014 22.220 22.275 22.362b

DV 1.836 1.158 8.608E-1 9.940E-1b

u 2.678E-1 2.680E-1 2.697E-1 2.655E-1a

Du 6.579E-1 3.497E-1 3.280E-1 4.274E-1a

Nu 4.500 4.479 4.493 4.579a

û 2.475E-1 2.446E-1 2.428E-1 2.389E-1a

Dû 6.5E-5 3.9E-5 2.4E-5 1.683E-5b

v̂ 3.071 3.031 2.993 3.009b

Dv̂ 4.402E-3 3.186E-3 2.439E-3 1.608E-3b

Period 3.407 3.403 3.416 3.412a

Note: The benchmark solutions are provided by a Xin and Le Quéré (1991) and b Johnston and
Krasny (2001)

Table II.
Comparison of the
vorticity method
solution with the
benchmark solutions
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fine mesh. The worse result is for the u-component of velocity which is only
within 11 percent of the benchmark. However, the average speed at the test
location ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þ generated by the vorticity code is within 4 percent of the

benchmark result. The match between the vorticity and benchmark results for
the average values of the integrated quantities, namely, the Nusselt number,
the average kinetic energy, and the enstrophy are much closer than the point
data with the maximum difference being less than 2 percent.

All D quantities in Table II represent the peak-to-valley oscillation of the
variable measured at quasi-steady state. The magnitudes of these oscillations
are seen to decrease with grid refinement. For some reason, the D quantities
generated using the medium mesh match the benchmark solutions better than
the fine mesh results.

5. Conclusions
A vorticity formulation to analyze the natural convection of an
incompressible, Boussinesque fluid in a differentially-heated enclosure has
been developed. The vorticity formulation is based on a three-step
algorithm in which the flow kinematics are governed by the GHD and the
flow kinetics are governed by the vorticity and energy equations. The GHD
is used to determine both vortex sheet strengths which yield Neumann
boundary conditions for the vorticity equation and to determine the interior
velocity field. In this way, the convective acceleration terms in both the
vorticity and energy equations are linearized.

A novel Galerkin implementation of the GHD is presented. The Galerkin
implementation not only provides far more accurate Neumann boundary
conditions, but also has a couple of other practical advantages. First, the
left-hand-side of the GHD is incorporated into the right-hand-side using rigid
body arguments. This not only obviates the need of evaluating the coefficient
h(~x) but also results in only double integrals appearing in the Galerkin GHD.
Second, the Cauchy principal value integral appearing in the GHD has been
regularized again using the rigid body arguments. Standard boundary element
procedures are used to discretize both the regular and Galerkin form of
the GHD.

Two benchmark problems are considered. The vorticity results at steady
state matched extremely well to results available in the literature for the square
enclosure at Ra ¼ 1;000. The vorticity results for the 8£1 enclosure at Ra ¼
310;000 showed that a quasi-steady state is reached after approximately 350 s
and that an unsteady oscillation with period of approximately 3.4 s appears in
all the primary variables. Comparisons between the results generated with the
current vorticity method and the benchmark numerical results agreed
reasonably well especially for integrated quantities such as the Nusselt
number, average kinetic energy, and average enstrophy.
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